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Quantum dynamics of a hydrogen molecule confined in a cylindrical potential
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We study the coupled rotation-vibration levels of a hydrogen molecule in a confining potential with cylin-
drical symmetry. We include the coupling between rotations and translations and show how this interaction is
essential to obtain the correct degeneracies of the energy level scheme. We applied our formalism to study the
dynamics of H2 molecules inside a ‘‘smooth’’ carbon nanotube as a function of tube radius. The results are
obtained both by numerical solution of the (2J11)-component radial Schro¨dinger equation and by developing
an effective Hamiltonian to describe the splitting of a manifold of states of fixed angular momentumJ and
number of phononsN. For nanotube radius smaller than'3.5 Å, the confining potential has a parabolic shape
and the results can be understood in terms of a simple toy model. For larger radius, the potential has the
‘‘Mexican hat’’ shape and therefore the H2 molecule is off centered, yielding radial and tangential translational
dynamics in addition to rotational dynamics of H2 molecule which we also describe by a simple model. Finally,
we make several predictions for the the neutron scattering observation of various transitions between these
levels.
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i
ti

ia.
m
d

un
pi
ica

is

f

th
th
d
on

l
V

th
is
o
ffe
he

o

o
-
e

n

in a
to
ab-
ati-

een
nal

a

nces

no-

-

I. INTRODUCTION

The study of quantum dynamics of hydrogen molecules
confined geometries has recently developed into an ac
field both experimentally and theoretically1–12 due to poten-
tial use as catalysts, molecular sieves, and storage med
the case of fullerenes and nanotubes, such trapping
yield new exotic quantum systems due to zero and one
mensionality of the absorption sites, respectively. Thus,
derstanding the structural and dynamical aspects of trap
in confining geometries is of both fundamental and pract
importance.

The theory of molecular rotation in solids has a long h
tory dating back to the early work of Pauling,13

Devonshire,14 and Cundy.15 They introduced the concept o
the crystal field potentialV(V), whereV specifies the ori-
entation of the molecule, to solve for the energy levels of
hindered rigid-rotor. This traditional approach assumes
the center of mass~c.m.! of the trapped molecules are fixe
and therefore does not take into account the rotati
vibration ~RV! coupling. However, recent studies5,11 have in-
dicated that vibrational levels of H2 trapped in the octahedra
sites of C60, for example, are significantly perturbed by R
coupling and in a previous paper5 ~I! we have shown that this
coupling has to be included in a symmetry analysis of
energy level degeneracies. Interestingly, to date there
little done to treat c.m. dynamics and RV coupling. Most
the studies are based on the approximation where an e
tive orientational crystal field potential is obtained after t
potential is averaged over the zero-point translational m
tions of the H2 molecule.11,12

Recently ~in I! we have presented a detailed theory
coupled RV dynamics of H2 molecule trapped in a zero
dimensional cavity with various symmetries. Here w
present a similar study to analyze the combined rotatio
0163-1829/2003/67~24!/245413~15!/$20.00 67 2454
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and translation states of hydrogen molecules confined
one-dimensional potential. This problem is closely related
the experimental situation where hydrogen molecules are
sorbed into carbon nanotube ropes. Figure 1 shows schem
cally various types of absorption sites for H2 molecule. Sev-
eral neutron and Raman scattering experiments have b
carried out to characterize the binding energies and rotatio
barriers for H2 at these sites with conflicting results.1–4,9–11

One of the motivations of the present work is to provide
detailed description of the RV dynamics of H2 molecules at
these different absorption sites and discuss the conseque

FIG. 1. A schematic representation of a single wall carbon na
tube rope indicating three different absorption sites, namely,~A!
endohedral,~B! interstitial, and~C! external adsorption sites, re
spectively.
©2003 The American Physical Society13-1
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TANER YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 67, 245413 ~2003!
for inelastic neutron scattering experiments. In the pres
paper, we focus our attention on the general formalism
discuss only the case where a single H2 is confined inside a
single nanotube. Extension of this work to the interstitial a
external sites and to cases where H2 molecules interact with
one another will be presented elsewhere.

Briefly this paper is organized as follows. In the next se
tion, we discuss the potential model for hydrogen and na
tube interactions and validate several approximations, s
as assuming a smooth tube, used in our formalism. In Sec
we present our formalism to treat the coupled rotational
translational motion of H2 molecule confined in a smoot
nanotube. We show that the problem can be mapped in
(2J11)-component radial Schro¨dinger equation which can
be solved numerically. In Sec. IV we discuss the dynamics
a hydrogen molecule when the confining potential has p
bolic shape~which occurs for a small-radius nanotube!. We
interpret the exact numerical results in terms of a sim
analytical toy model. In Sec. V we discuss the case where
confining potential has a Mexican-hat shape. For this c
@which occurs for large radius nanotubes such as~10,10!# the
equilibrium position of the c.m. of the H2 molecule is off-
center and it performs radial and tangential translational
cillation in combination with its rotational dynamics. In th
section, we also present several perturbation results w
help to interpret the exact numerical results. In Sec. VI
discuss the experimental observation of various transiti
via inelastic neutron scattering measurements. Our con
sions are summarized in Sec. VII.

II. POTENTIAL MODEL

We model the intermolecular potential for H2 trapped in a
carbon nanotube as a sum of atom-atom potentials

V~r ,V!5(
i ,H

(
j ,C

@B exp~2Cri j !2A/r i j
6 #. ~1!

The dependence of the potential on the position (r ) and ori-
entation (V) of H2 molecule is through the interatomic dis
tancesr i j . All the results reported in this paper are obtain
from the same WS77 potential16 2A/r 61B exp(2Cr)
~where A55.94 eV Å,6 B5678.2 eV, andC53.67 Å21),
that we used in I.5 Compared to other commonly used pote
tials, the WS77 potential gave the best fit to the energy sp
trum of H2 in solid C60.

For simplicity we will restrict this formulation to the ide
alized case when the hydrogen molecule is confined b
so-called ‘‘smooth’’ nanotube. By this we mean that the p
tential produced by the nanotube has cylindrical symme
and is invariant with respect to translations along its axis
symmetry. In some of our numerical work we will stud
‘‘real’’ nanotubes which do not possess the high symmetry
‘‘smooth’’ nanotubes.

It is instructive to look at various potentials for an orie
tationally averaged hydrogen molecule~i.e., parahydrogen
with J50) when H2 is inside and outside a single nanotub
Figure 2 indicates two different types of confining potent
depending on the nanotube radius. Figure 2 shows tha
24541
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small nanotubes such as~9,0!, the potential minimum occurs
at the center of the tube and therefore the potential ha
parabolic shape. However, for larger nanotubes such as
~10,10! nanotube, the minimum is off centered and therefo
the potential has a Mexican-hat shape. Because of this
centering the dynamics of the H2 molecule is a quite inter-
esting and rich one as we discuss in detail below. The ri
panels in Fig. 2 shows the potential when the H2 molecule is
outside the nanotubes. The outside binding energy does
depend on the tube radius strongly and is about 30 meV.
horizontal lines indicates the radial phonon energy leve
indicating that at least a few bound states can occur even
a hydrogen molecule outside a single nanotube. The s
and dashed lines in Fig. 2 show the results with and with
the smooth tube approximation, respectively. Since these
curves are very close to one another, the smooth tube
proximation will not cause significant error in our theory.

In order to develop some intuition about the orientation
potential for a hydrogen molecule in a nanotube, in Fig. 3~a!
we show the radial potential for three different orientatio

FIG. 2. Potential energy as a function of distance from tu
center for a para hydrogen~i.e., J50) interacting with a~9,0! ~top!
and ~10,10! ~bottom! nanotube. The solid and dashed lines are
smooth and actual carbon nanotubes, respectively. For the a
carbon nanotubes, the value ofz axis is taken arbitrarily. The hori-
zontal lines in the bottom panel indicate the radial phonon bo
states in smooth nanotubes. The insets to the left panels are
matic plots of the parabolic~top! and Mexican hat potentials
respectively.
3-2
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QUANTUM DYNAMICS OF A HYDROGEN MOLECULE . . . PHYSICAL REVIEW B 67, 245413 ~2003!
of H2 molecule inside a~10,10! nanotube. We note that th
radius of the~10,10! tube is large enough that the parallel
the axis~p! and tangential~t! orientations@as depicted in the
inset to Fig. 3~a!# give almost the same energy. However, t
radial ~r! orientation of a H2 molecule has a minimum en
ergy which is about 8 meV higher in energy than that of
other two orientations. We also point out that the position
the c.m. of the H2 molecule for the minimum potential en
ergy changes about 0.2 Å depending on the orientation of
H2 molecule. This is a clear indication that the orientation
and vibrational motion of hydrogen molecule are sign
cantly coupled.

Figure 3~b! shows the minimum potential energie
Er , Ep , andEt for respective radial, parallel, and tangent
orientations of an H2 molecule inside various nanotubes. It
clear that for nanotube radius around 3 Å, the orientatio
dependence of the potential is of the order of 30 meV a
therefore is comparable to the energy separation of 80 m
or more between energy levels corresponding to differ

FIG. 3. ~a! Potential energy as a hydrogen molecule is transla
from the center of a~10,10! nanotube when H2 is oriented to be
parallel to the tube axis (p), radially (r ), and tangentially (t),
respectively. Inset shows these configurations. The equilibrium
tance and minimum potential depends strongly on the orientatio
the H2 molecule, indicating strong rational-translational couplin
~b! The minimum potential energiesEr , Ep , and Et , for radial,
parallel, and tangential orientation of H2 molecule for various nano
tubes.
24541
e
f

e
l

l

al
d
V
t

rotational quantum numberJ’s. Accordingly, for tubes whose
radius is less than that of a~9,0! tube,J may not be consid-
ered to be a good quantum number. For large nanotu
such as~10,10!, the orientational potential is of the order o
8 meV and does not change much with larger radius tu
~i.e., close to the graphite limit!. In the present paper, w
present our formalism using~9,0! and ~10,10! nanotubes
which represent the two potential regimes; namely the pa
bolic and Mexican-hat potentials, but for both tubesJ is con-
sidered to be a good quantum number.

III. FORMULATION

The hydrogen molecule is unique in that its moment
inertia is small enough that the rotational kinetic energy
ten dominates the orientational potential in which the m
ecule is placed. Under these circumstances the rotati
quantum numberJ is nearly a good quantum number and t
effect of the orientational potential is to reduce the deg
eracy of the 2J11 substates of a givenJ. ~The generaliza-
tion of the formulation we present below to the case wheJ
is not a good quantum number will be present
elsewhere!.17 In the present case any eigenfunction descr
ing the orientational and translation state of the molecule
be written in the form

C~r ,V!5c~r ,f r ;V!eikz5 (
M52J

J

FM
J,k~r ,f r !YJ

M~V!eikz,

~2!
where r, z, and f r are the cylindrical coordinates of th
center-of-mass of the hydrogen molecule,V denotes its mo-
lecular orientation specified by anglesu andf, andYJ

M(V)
is a spherical harmonic. We will refer toc(r ,f r ;V) as the
cylindrical RV wave function. For economy of notation w
henceforth omit the superscriptsJ and k. BecauseFM is
allowed to depend arbitrarily onr and f r , this wave func-
tion takes into account the most general interaction betw
rotations and translations subject to the constraint thatJ is a
good quantum number. In this notation, the Hamiltonian
a single hydrogen molecule~of massm) with J andk fixed is
written as

H52
\2

2m
¹21BJ~J11!1V~r ,V!, ~3!

wherem is the mass of an H2 molecule andV(r ,V) is the
orientational potential which, as indicated, also depends
position. For a smooth nanotube we may write the orien
tional potential energy as

V~r ,V!5V0~r !1(
L,M

VL
M~r ,f r !YL

M~u,f!, ~4!

where the sum is overL.0. Hereu is the angle between th
H2 molecular axis and the axis of the tube. Although t
transverse direction forf50 is arbitrary, it does have to
coincide with that forf r50. Because the hydrogen mo
ecule is centrosymmetric, only terms withL even appear in
the potential. Also, because a smooth nanotube has a m
plane perpendicular to the axis of symmetry, only terms w
evenM appear. Furthermore, because a global rotation of

d
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TANER YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 67, 245413 ~2003!
molecule ~i.e., incrementing bothf and f r by the same
amount! is a symmetry of the system, we may write

V~r ,V!5V0~r !1(
L,M

vL
M~r !YL

M~u,0!eiM (f2fr ), ~5!

wherevL
M is a function only ofr and vL

2M5vL
M* . In addi-

tion, vL
M(r 50) vanishes forMÞ0. There is also a mirror

plane containing the long axis of the tube which implies t
the potential should be an even function of (f2f r). This
implies thatvL

M(r ) is a real-valued function. This functio
may be evaluated by integrating the potential at a fix
center-of-mass position over all orientations

vL
M~r !5eiM frE dVYL

M~u,f!* V~r ,V!. ~6!

Contrary to appearance,vL
M(r ) does not depend onf r be-

causeV(r ,V) is a function of (f2f r).
The Schro¨dinger equation forc(r ,f r ;V) is

F2
\2

2m S ]2

]r 21
1

r

]

]r
1

1

r 2

]2

]f r
2D 1V0~r !

1(
LM

vL
M~r !e2 iM frYL

M~V!Gc (a)~r ,f r ;V!

5Ê(a)c (a)~r ,f r ;V!, ~7!

where Ê(a)5E(a)2BJ(J11)2\2k2/(2m). For given val-
ues ofJ andk, this equation generates a spectrum of eig
vectorsc (a)(r ,f r ;V) with associated eigenvaluesÊ(a), for
a50,1, . . . .Substituting Eq.~2! into the Schro¨dinger equa-
tion we rewrite it in the form

H 2
\2

2m S ]2

]r 21
1

r

]

]r
1

1

r 2

]2

]f r
2D 1V0~r !J FM

(a)~r ,f r !

1 (
L,M8

S E dVYJ
M~V!* YL

M8~V!YJ
M2M8~V!dV D

3vL
M8~r !FM2M8

(a)
~r ,f r !e

2 iM 8fr

5Ê(a)FM
(a)~r ,f r !, M52J,2J11•••J21,J. ~8!

We see that we may write a solution to this set of equati
in the form

FM
(a)~r ,f r !5 f M ,P

(a) ~r !e2 i (P1M )fr, ~9!

where P is a quantum number whose significance we w
discuss shortly. Thus we have
24541
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H 2
\2

2m S ]2

]r 21
1

r

]

]r
2

1

r 2 ~P1M !2D1V0~r !J f M ,P
(a) ~r !

1 (
L,M8

vL
M8~r ! f M2M8,P

(a)
~r !

3S E dVYJ
M~V!* YL

M8~V!YJ
M2M8~V!dV D

5E fM ,P
(a) ~r !. ~10!

For eachP index we have a Schro¨dinger equation for the
(2J11)-component wave function which is of the form
@ f 2J,P

(a) (r ), f 2J11,P
(a) (r ), . . . f J,P

(a) (r )#. Then the cylindrical RV
wave function is

cP
(a)~r ,f r ,V!5e2 iPfr(

M
f M ,P

(a) ~r !YJ
M~V!e2 iM fr

5e2 iPfr(
M

f M ,P
(a) ~r !YJ

M~u!eiM (f2fr ).

~11!

It is important to keep in mind thatvL
M(r ) vanishes for odd

M. As a consequence, in the (2J11)-component wave func
tion there is no mixing between even and odd values ofM.
For J51 wave functions one will have ‘‘even’’ wave func
tions in which the sum overM in Eq. ~11! reduces to the
single term forM50 and ‘‘odd’’ wave functions in which
the sum overM in Eq. ~11! includes onlyM561.

The quantum numberP indicates that this wave function
transforms ase2 iPf when the position and orientation of th
molecule are simultaneously rotated about the axis of s
metry. Under this global rotation the quantity

f M ,P
(a) ~r !e2 iM frYJ

M~V! ~12!

is invariant, so the total wave function transforms as sta
WhenvL

M(r ) is independent ofr, then, sincevL
M(r 50) must

vanish, we have thatvL
M(r )50 for MÞ0 and, in Eq~10!

there is no coupling betweenf M
(a)’s for different values ofM.

Thus, in this case there is no dynamical interaction betw
the orientational coordinate and the center-of-mass coo
nate and the wave function can be chosen so thatf M ,P is only
nonzero for a single value ofM. Then one has the usua
separation of variables so that the orientational wave fu
tion is proportional toeiM f and the translation wave functio
is proportional toe2 i (M1P)fr. Here we have accomplished
similar separation of coordinates whenvL

M(r ) is allowed to
depend onr. Now the result is not a scalar radial equatio
but rather a radial equation for a (2J11)-component wave
function. That is the result embodied in Eq.~10!, where we
have one such (2J11)-component radial Schro¨dinger equa-
tion for each value ofP.

IV. QUASIHARMONIC POTENTIAL

In this section we discuss the case exemplified by a2
molecule inside a (9,0) nanotube, for which the minimum
the potentialV0(r ) occurs forr 50, in which case we will
3-4
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QUANTUM DYNAMICS OF A HYDROGEN MOLECULE . . . PHYSICAL REVIEW B 67, 245413 ~2003!
introduce a toy model with the isotropic harmonic potent
V0(r )5 1

2 kr2.

A. No interactions between rotations and translations

1. Harmonic potential

Here we discuss the eigenvalues and eigenfunctions o
two-dimensional isotropic harmonic oscillator, to emphas
the relation between the above formulation in terms of cy
drical coordinates and that in terms of Cartesian coordina
For an isotropic and harmonic potential we expect the eig
values to be

En5~n11!\v5~n11!Ak/m. ~13!

Note that thenth level ~with energyn\v) is n-fold degen-
erate, because in Cartesian notation, if, sayn54, we have
wave functions (3,0), (2,1), (1,2), and (0,3), where (n,m)
is a wave function withn excitations in thex coordinate and
m excitations in they coordinate. This degeneracy reflec
the U2 symmetry corresponding to the invariance of t
Hamiltonian with respect to a transformation of the form

S ~ax
†!8

~ay
†!8D 5@U#S ~ax

†!

~ay
†!D , ~14!

whereax
† anday

† create phonons in thex andy coordinates,
respectively, andU is a two-dimensional unitary matrix. Thi
transformation is essentially the same as a four-dimensi
rotational symmetry in the space of the momentapx , py ,
and coordinatesx andy. Since the kinetic energy is quadrat
in the momenta, spherical symmetry in this space only ho
if the potential is harmonic.

In cylindrical coordinates the eigenfunctions can be w
ten as

cm
a~r !eimf, ~15!

wherecm
a(r ) satisfies the radial equation

2
\2

2m Fd2cm
a~r !

dr2 1
1

r

dcm
a~r !

dr
2

m2

r 2 G1
1

2
kr2cm

a~r !

5Em
acm

a~r !. ~16!

Here the family of solutions for a given value ofm are la-
beleda50,1,2, . . . , in order of increasing energy and fo
the isotropic and harmonic potential we have

Em
a5~m1112a!\v. ~17!

So from the radial equation form50 we have eigenvalue
\v, 3\v, 5\v, etc. The fact that we have a seeming
accidental degeneracy between different representations~i.e.,
between different values ofm) is the result of theU2 sym-
metry of the Hamiltonian mentioned above. A conseque
of this symmetry is that for a harmonic potential the to
energy depends only on the total number of phonon exc
tions. This symmetry is distinct from the circular symmet
in x-y space.
24541
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2. Anharmonic potential

The U2 symmetry is broken by anharmonic terms whi
then take us into the generic case of a particle in a circula
symmetric potential which is not harmonic. Accordingly, w
now consider the effect of adding an anharmonic pertur
tion of the formgr 4 to the harmonic potential. For illustra
tive purposes, we treat this anharmonic perturbation wit
first-order perturbation theory. Our results are characteri
of the generic case, for which different values ofm give rise
to distinct eigenvalues. In this case, then-fold degenerate
manifold which has energyn\v for the harmonic potentia
is split into doublets~corresponding to the degeneracy b
tween1m and2m) and, if n is odd, a singlet fromm50.
Our explicit results are given in Table I. These results
generic in the sense that addition of further anharmo
terms will not further change the degeneracies.

B. Toy model of translation-rotation coupling

In this section we explore the consequences of allow
coupling between rotations and translations. Since we n
restrict attention to the manifold of (J51), we need keep
only terms withL52 in Eq.~5!. Thus, as a toy model, we se

V~r ,V!5
1

2
kr22

5

2
a~3 cos2u21!

2
5

2
br 2sin2u cos~2f22f r !, ~18!

wherea, b, and k are constants and the factor2 5
2 is in-

cluded so that the matrix elements are numerically simp
Also we take the dependence onr to be quadratic to facilitate
calculation of the matrix elements. In the language of Eq.~5!
this model has v2

0(r )52aA20p and v2
62(r )

52br 2A10p/3. We are going to consider the effect of th
Hamiltonian within the manifold of (J51) states. Using this
toy model we can illustrate how the rotation-translation
fects the symmetry of the energy levels. Within the (J51)
manifold we may use operator equivalents to write

V~r ,V!5
1

2
kr21a~3Jz

222!1b@~Jx
22Jy

2!~x22y2!

12~JxJy1JyJx!xy#

5
1

2
kr21a~3Jz

222!1
1

2
b~J1

2 1J2
2 !~x22y2!

2 ib~J1
2 2J2

2 !xy. ~19!

For illustrative purposes we will assume thata andbs2 are
small compared to the phonon energy\v. Here s25^x2&
5^y2&, where the averages are taken in the ground state
that case, in addition to the quantum numberP, the total
number of phononsN is a good quantum number. Howeve
we emphasize that in our numerical work,18 we do not make
this approximation. Equation~10! assumes thatJ is a good
quantum number but mixes states with different numbers
phonon excitations. We should mention that the toy mo
assumes that the molecule has minimal potential ene
3-5
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TABLE I. Two-dimensional harmonic oscillator wave functions.

E/(\v) (dE/dg)g50 ma c c(x,y)b

1 8s4 0 ~0,0! 1

2 24s4 1 (1,i ) x1 iy
2 24s4 21 (1,2 i ) x2 iy

3 56s4 0 @ ~2,0! 1 ~0,2!# (r 2/s2)22

3 48s4 2 @(2,0)2(0,2)1 iA2(1,1)# (x1 iy)2/s2

3 48s4 22 @(2,0)2(0,2)2 iA2(1,1)# (x2 iy)2/s2

4 96s4 1 @A3(3,0)1(1,2)# @(x1 iy)/s#@(r 2s2)24#

4 96s4 21 @A3(0,3)1(2,1)# @(x2 iy)/s#@(r 2/s2)24#

4 80s4 3 @(3,0)2A3(1,2)#1 iA3(2,1)2 i (0,3) @(x1 iy)/s#3

4 80s4 23 @(0,3)2A3(2,1)#2 iA3(2,1)1 i (0,3) @(x2 iy)/s#3

aIn cylindrical coordinates thef-dependence is through the factoreimf.
bThe wave function contains, in addition to the factors listed, exp@2(x21y2)/(4s2)# as well as a normalization
factor.
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when it on the axis of the tube. For small@e.g.,~9,0! tubes#
this assumption is justified. For larger tubes, the minim
potential energy occurs for a nonzero value ofr and the
molecule is dominantly off center. We will later treat th
case using a different model.

C. Results of the toy model

We now discuss the results of the toy model assuming
the number of phonons is a good quantum number. We n
that all the energy expressions given below are with resp
to BJ(J11) with J51.

1. Zero phonon manifold

We first consider the manifold of the states havingJ51
with zero phonons. One finds that the energy is diagona
Jz with

E~Jz!5a~3Jz
222!, ~20!

so that~if a is positive! one has the singletJz50 state lower
than the doubletJz561 states by an energy separation
3a. One may visualize this as the energy difference betw
a state for which the molecule is in the phonon ground s
and is oriented parallel to the axis and the two states w
the molecule is in the phonon ground state and is orien
transversely to the axis. For later use we tabulate these w
functions in Table II.

2. One-phonon manifold without rotation-translation coupling

If we setb50 in the toy model of Eq.~19!, then essen-
tially we have independent oscillation of molecules whi
have fixed orientation. Then ifnx andny are the vibrational
quantum numbers, we see that in the one-phonon man
(nx1ny51) we have
24541
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E~nx ,ny ,Jz!52\v1a~3Jz
222!, ~21!

so that the lowest energy state~if a.0) is doubly degenerate
and the excited state is fourfold degenerate, as is show
Fig. 4.

3. One-phonon manifold with rotation-translation coupling

The unphysical aspect of the energy level scheme we
found for the one-phonon manifold is that it does not ta
into account that the molecular orientation ought to be c
related with the translational motion. If the molecule tran
lates near the wall, then the molecule should preferenti
be parallel to the wall. This means that the orientation of
molecule has to be correlated with the translational moti
This effect will be greater the more strongly the wall pote
tial affects the motion of the molecule.

In terms of number operatorsnx and ny which are the
number of phonon excitations in thex and y directions, re-
spectively, andax

† and ay
† which are creation operators fo

TABLE II. Wave functions for rotation-vibration forJ51,nx

5ny50.

Energya Pb Wave function
nx50,ny50

Jz511 Jz50 Jz521

22a 0 0 1 0
a 1 1 0 0
a 21 0 0 1

aWe tabulate the energy relative to\v.
bP defines the transformation of the wave function under a glo
rotation, as explained in connection with Eq.~11!.
3-6
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these excitations, we may write the Hamiltonian for the o
phonon (J51) manifold as

H5\v~nx1ny11!1a~3Jz
222!1s2b@~J1

2 1J2
2 !~nx2ny!

2 i ~J1
2 2J2

2 !~ax
†ay1ay

†ax!#. ~22!

This gives the energy level scheme shown in the rightm
panel of Fig. 4. The wave functions are given in Table III a
we discuss them now. First of all, in a classical picture,
would argue that the molecule can oscillate equivalently
each of the two coordinate directions transverse to the cy
der. In each of these two cases the molecule can assume
inequivalent orientations because the directions~a! along the
axis of the tube,~b! parallel to the directions of spatial osci
lation, and~c! transverse to the direction of spatial oscillatio
are all inequivalent to one another. This argument pred
that the six states form three doubly degenerate energy

FIG. 4. Removal of the degeneracy in the energy level sche
of the one-phonon (J51) manifold according to the Hamiltonian o
Eq. ~22!. The diagram labeled ‘‘sphere’’ is for a spherical molecu
for which a5b50. That labeled ‘‘rod’’ is for decoupled rotation
and translations of a rodlike molecule for whichaÞ0, but b50.
That labeled ‘‘rot-vib’’ is for translation-rotation coupling withb
Þ0.
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els. Quantum mechanically the situation is different. In Fig
we show the energy levels when no dynamical mixing b
tween rotations and translations is allowed, i.e., forb50. In
this limit the six states form a degenerate doublet and a
generate quartet. When translation-rotation mixing is
lowed, i.e., forbÞ0, we now have the generic case of tw
doublets and two singlets, as shown in Fig. 4. The wa
functions are shown in Fig. 5.~It is interesting to note tha
it is not obvious that the wave functions forP512 and
P522 are related by symmetry.!

4. Two-Phonon manifold with rotation-translation coupling

Actually, because the dependence onr of the matrix ele-
ments in Eq.~19! was taken to be either constant or propo
tional tor 2, the representation of Eq.~22! is valid within any
manifold of fixed total number of phonons and (J51). The
removal of the degeneracy in the energy level scheme of
two-phonon~i.e., nx1ny52) and (J51) manifold accord-
ing to the Hamiltonian of Eq.~22! is shown in Fig. 6. The
eigenfunctions and eigenvalues for this manifold includi
anharmonicity are listed in Table IV.

The results obtained by numerically solving the eige
value problem of Eq.~10! using the WS77 potential ar
given in the last column of Table V.18 To understand the
meaning of this spectrum, we relate these results to thos
the toy model when the parameters of the toy model
suitably chosen. For a good fit we allow the constantsa and
b to depend on the total number of phononsN. ~This depen-
dence reflects the fact that the dependence of the param
of the toy model onr is arbitrary and unrealistic.! In this
simple model we also include the anharmonic termgr 4

which we treat within first order perturbation theory. We d
termine the best parameters for the toy model by makin
least squares fit of the numerically determined energy lev
to those of the toy model and these parameters as well a
results of this fit are given in Table. V. The fact thataN
depends onN indicates that we should probably replacea by
ar 2. Also the fact that the splitting of the two phonon man

e

n with
TABLE III. Wave functions for rotation-vibration forJ51, nx1ny51.

Energya Pb Wave function
nx51,ny50 nx50,ny51

Jz511 Jz50 Jz521 Jz511 Jz50 Jz521

a14s2b 0 1
2 0 1

2 2
1
2 i 0 1

2 i

a24s2b 0 1
2 0 2

1
2 2

1
2 i 0 2

1
2 i

22a 1 0 1

A2
0 0 1

A2
i 0

22a 21 0 1

A2
0 0 2

1

A2
i 0

a 2 1

A2
0 0 1

A2
i 0 0

a 22 0 0 1

A2
0 0 2

1

A2
i

aWe tabulate the energy relative to 2\v.
bP defines the transformation of the wave function under a global rotation, as explained in connectio
Eq. ~11!.
3-7
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TANER YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 67, 245413 ~2003!
fold is not perfectly reproduced by the toy model indica
that the anharmonicity energy is not simply proportional
r 4. Nevertheless the close agreement between our nume
results and those of the toy model indicates that this mo
provides a useful simple picture of translation-rotation co
pling.

FIG. 5. Translation-rotation wave functions for a (J51) with
one phonon when there is dynamical mixing of translations
rotations. Here the plane of the paper is thex-y plane and each
figure eight represents anuX& or uY& orientational wave function
and the sign associated with each lobe of thisp-like function is
indicated. For theuZ& orientational function~which would have the
figure eight coming out of the page! we indicate the sign of the lobe
in front of the page. Each orientational wave function is multipli
by a translational wave functionux& or uy&, where, for instance,
ux&;x exp@2 1

4(x/s)2#. The presence of a phonon in ther a coordi-
nate thus causes the wave function to be an odd function ofr a , as
one sees in the diagrams. One sees that theP50 wave functions are
invariant under rotation byp/2. ~In fact, they are angular invari
ants.! From the states labeled with nonzero values ofP, one can
form the complex linear combinations which transform aseiPf

when the position and orientation of the molecule are simu
neously rotated about the symmetry axis. Although it is far fro
obvious, the two states labeledP52 are degenerate in energy. Th
two P50 states have different energy, in general. So quantum
chanics predicts the six state manifold to consist of two doub
~one for P561 and one forP562) and two singlets~for P
50).
24541
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5. Summary

We can summarize the systematics of the rotati
translation spectrum of the toy model we have introduc
We first consider the harmonicg50 case and then discus
the effect of introducing anharmonicity. In theN-phonon sec-
tor the harmonic phonon wave functions give rise to sta
proportional to (x1 iy)N. Combining these with aJz51
state gives a uniqueP5N11 state. This state will be degen
erate with the similarP52N21 state. In the toy mode
these states have energy (N11)\v1a. Adding anharmo-
nicity shifts the energy of these two states, but their deg
eracy is generic.

Harmonic phonon states which transform asx
1 iy)N22k will uniquely combine withJz50 states to form
states for whichP5(N22k) and which have energy (N
11)\v22a. In analogy with Fig. 4, anharmonicity split

d

-

e-
ts

FIG. 6. Removal of the degeneracy in the energy level sche
of the two-phonon (J51) manifold according to the Hamiltonian
of Eq. ~22!. The diagram labeled ‘‘sphere’’ is for a spherical mo
ecule for whicha5b50. That labeled ‘‘rod’’ is for decoupled
rotations and translations, but withaÞ0. That labeled ‘‘rot-vib’’ is
for anharmonic and translation-rotation coupling withbÞ0. Here
R5Ag2s812b2s4.

TABLE IV. Wave functions for J51,nx1ny52 with anhar-
monic ~scaled with g) and rotation-translation coupling~scaled
with b).

P Wave functiona Energyb

0 um50;M50& 22a116gs4

1 @ um52;M521&1um50;M51&]/A2 a112gs414R
21 @ um522;M51&1um50;M521&]/A2 a112gs414R
1 @ um52;M521&2um50;M51&]/A2 a112gs424R
21 @ um522;M51&2um50;M521&]/A2 a112gs424R
2 um52;M50& 22a18gs4

22 um522;M50& 22a18gs4

3 um52;M51& a18gs4

23 um522;M521& a18gs4

aHere M indicates a wave function for whichJz5M . The states
indicated bym are the phonon states in the cylindrical gauge a
are listed in Table I.

bHere R5Ag2s812b2s4. Also these are energies relative to 2B
13\v140gs4.
3-8
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these states into doublets of1P and2P and, if P is even, a
singlet forP50.

The rotation-translation coupling~proportional tob) in-
fluences the states withP5N21, P5N23, etc. For posi-
tive P one has two eigenstates made from linear comb
tions of states of the formf1[(x1 iy)P11uJz521& and
f2[(x1 iy)P21uJz511&. Since the rotation translatio
coupling interaction proportional toxy(J1

2 2J2
2 ) has matrix

elements between these two states, the eigenstatesf16f2
will be split by an amount proportional tobs2 and this split-
ting will be modified by anharmonicity. Obviously, this sc
nario indicates that one can not understand the degener
of the states of a hydrogen molecule in confined geom
without considering the effect of rotation-translation co
pling.

V. MEXICAN HAT POTENTIAL

Here we discuss the case when the minimum of the
tential V0(r ) occurs for nonzeror as happens for H2 mol-
ecules inside 10310 tubes or for H2 molecule in a bound
state outside any tube. We start from Eq.~10!. To see what
this equation yields, we first consider its solutions for aJ
50) molecule. We have solved the eigenvalue problem
Eq. ~10! numerically on a mesh of points for a 10310 tube.18

The results shown in Fig. 7~a! indicate two different regimes
for the dependence of the energy levels on the quantum n
berP. For the low-lying energy states it is quadratic and th
gradually becomes linear as the energy of the states incre

It is possible to understand the quadratic behavior of
ergy levels versus the quantum numberP based on a simple
idealized model. AssumingV0(r ) can be replaced by a ha
monic oscillator potential, Eq.~10! becomes essentially

TABLE V. Energy levels in meV for the toy model for a (J
51) hydrogen molecule inside of a~9,0! tube, compared to numeri
cal calculations based on Eq.~10!: The parameters~in meV! are
a052.82. a153.56, a254.32, b1s250.59, b2s250.55, gs4

50.29, and\v527.36.

P Toy Model Energya,b Energya ~Numeric!

0 0 0
61 3a058.46 8.46

0 2a01a114b1s21\v538.92 39.01
0 2a01a124b1s21\v534.20 34.29
61 2a022a11\v525.88 25.89
62 2a01a11\v536.56 36.56

0 2a022a214d12\v556.36 55.67
61 2a01a213d14R12\v571.68 71.13
61 2a01a213d24R12\v564.64 64.12
62 2a022a218gs412\v554.04 53.53
63 2a01a218gs412\v567.00 66.35

aThe zero of energy is taken to be the lowestP50 level.
bHereR5Ag2s812b2

2s4.
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F2
\2

2m

]2

]r 21
\2P2

2mr21E01
1

2
k~r 2r 0!2G f P

(a)~r !5EP
(a) f P

(a)~r !.

~23!

In writing this result we dropped the term linear in the d
rivative. This term does not contribute to the energy in fir
order perturbation theory. When we treat the term inP2 per-
turbatively, this equation leads to a harmonic oscilla
spectrum with

EP
(N)5E01S N1

1

2D\v1
\2P2

2m K 1

r 2L , ~24!

wherev5Ak/m and^X& here indicates an average ofX over
the radial wave function.

FIG. 7. The energy levels of of an H2 molecule with (J50) ~a!
and (J51) ~b! inside a (10,10) nanotube versus quantum num
P. The symbols and the dotted lines are obtained from numerics
the solid lines are fit based on the simple models as discussed i
text, indicating that a few of the lowest energy levels can be und
stood from these simple models. For the case of (J51) hydrogen
~bottom!, for eachP we have now three energies, which are split
about 3 meV~comparable to 2.6 meV observed for H2 on graphite!.
We note that for both (J50) and (J51) cases, onlyN50,1, and 2
phonon levels can be safely identified. The inset to the lower pa
gives the fitted values of the parameters of Eq.~28!. In the lower
panel, the energy is with respect toBJ(J11).
3-9
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TANER YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 67, 245413 ~2003!
The gray solid lines in Fig. 7a shows the results based
this model and the points are from the numerical exact
sults, indicating that our idealized model successfully
scribes the low-lying energy spectrum. Here\v is of order
14 meV and and the quantum of tangential kinetic ene
^\2/(2mr2)& is about 0.1 meV. Curiously, this spectrum
reminiscent of the vibration-rotation spectrum of a diatom
molecule.19 Finally as we go away from the ground state, t
simple model is not enough to explain the observed behav
We note that the spacing between the energy levels is
constant~probably due to an anharmonic contribution to t
potential! and the dependence on theP becomes almost lin-
ear.

We next discuss the solution of Eq.~10! for a (J
51) H2 molecule. Figure 7~b! shows the results obtaine
numerically.18 We will interprate numerical results using
simple model which includes the translation-rotation co
pling ~as embodied by thevL

M ’s!. We expect the radial wave
functions to be Gaussians centered aboutr 5r 0. Indeed in
the terms containingvL

M(r ), we will make the replacement

vL
M~r !→^vL

M~r !&. ~25!
of

rg

e

ea
e
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@To a good approximation these averages can be calcul
from the (J50) wave function.# In what follows we set

^v2
M~r !&5wM ~26!

for M50 andM52. Then, if we setr 5r 01x, Eq.~10! may
be approximated as

F2
\2

2m

]2

]x21
\2~P1M )2

2mr0
2 1E01

1

2
k~x2r 0!2G f M ,P

(a) ~x!

2
1

A2p
(
M8

C~121;M2M 8,M 8!wM8 f M2M8,P
(a)

~x!

5EP
a f M ,P

(a) ~x!, ~27!

where the Clebsch-Gordan coefficients assume the va
C(121;L,0)5(3L222)/A10 andC(121;21,2)5A3/5. For
each value ofN ~the number of radial phonons! and P ~the
number of tangential excitations! the Hamiltonian is the fol-
lowing three-dimensional matrix~where the rows correspon
to Jz521, Jz50, andJz511, in that order!:
H~N,P!5@E01N\v#I1F 1
3 d1A~P21!2 0 B

0 2 2
3 d1AP2 0

B 0 1
3 d1A~P11!2G , ~28!
he

ri-
toy

tion
ally
-of-
cal

for
where I is the unit matrix, A5^\2/(2mr0
2)&, d

523w0 /A20p, and B52w2A3/10p. For fixed values of
N andP we have the three energy eigenvalues

E(0)5E01N\v2
2

3
d1AP2,

E(6)5E01N\v1
1

3
d1A~P211!6A4A2P21B2.

~29!

In Fig. 7~b! we show the spectrum of a (J51) molecule
obtained numerically from Eq.~10! as a function ofP. Our
numerical results indicate the phonon numberN is a good
quantum number and can so be identified only forN,3.
Accordingly, we limit our detailed interpretation in terms
the model of Eq.~28! to N50. For each value ofP there are
three energy eigenvalues, two of which are close in ene
These corresponds to the case where the H2 molecule is ori-
ented parallel to the tube surface~i.e., t andp orientations in
Fig. 3!. The third energy corresponds to the orientation p
pendicular to the tube surface~i.e., r radial orientation shown
in Fig. 3!. This orientation has an energy about 3 meV n
than that of the other two orientations, and is comparabl
2.6 meV observed for H2 on graphite.12 Figure 7~b! shows
y.

r-

r
to

also the result of the simple model of Eq.~28!. The values of
A, B, andd used to get a good fit are given in the figure. T
value ofA ~0.092 meV! is not very different from the value
\2/(2mr0

2)50.087 one gets from the value ofr 5r 0

53.46 Å at the minimum of the potential. Thus the nume
cal results are easily understood in terms of our simple
model.

VI. EXPERIMENTAL OBSERVATION
OF THE ENERGY SPECTRUM

Here we make some remarks concerning the observa
of these modes via inelastic neutron scattering. Specific
we consider the energy loss spectrum in the neutron time
flight spectrum.~This technique has been used to probe lo
excitation of H2 molecules in the octahedral sites of C60.11!
We start be recalling the results for the cross section
inelastic neutron scattering of H2 molecules. When the very
small coherent~i.e., nuclear spin independent! scattering is
neglected, the result is

]2s

]V]E
5

k8

k
@NxS1→11NxS1→01N~12x!S0→1#,

~30!
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wherek (k8) is the wave vector of the incident~scattered!
neutron,N is the total number of H2 molecules in the target
x is the fraction of H2 molecules which have oddJ ~i.e., are
ortho molecules!, and the subscripts indicate the partial cro
sections due to ortho molecules, to ortho-para convers
and to para-ortho conversion, respectively. When the s
over nuclear spin states is performed, these partial cross
tions are given by

S0→1,j5
3

4
~b8!2 (

Ji50,Jf51
Pid~E2Ei1Ef !

3U^ f ueik•RjsinS 1

2
k•rD u i &U2

S1→0,j5
1

4
~b8!2 (

Ji51,Jf50
Pid~E2Ei1Ef !

3U^ f ueik•RjsinS 1

2
k•rD u i &U2

S1→1,j5
1

2
~b8!2 (

Ji51,Jf51
Pid~E2Ei1Ef !

3U^ f ueik•RjcosS 1

2
k•rD u i &U2

, ~31!

where k5k82k, Rj is the center of mass of thej th H2
molecule, andr is the vector displacement of one proto
relative to the other proton in the H2 molecule. Hereb8 is the
incoherent cross section of the proton andPi is the canonical
probability of statei. To deal with molecular orientations fo
molecules whereJ is at most unity, we write
ss

24541
s
n,
m
ec-

cosS 1

2
k• r̂D5 j 0S 1

2
kr D24p j 2S 1

2
kr D(

m
Y2

m~k̂!Y2
m~ r̂!*

sinS 1

2
k• r̂D54p j 1S 1

2
kr D(

m
Y1

m~k̂!* Y1
m~ r̂!, ~32!

where j n is a spherical Bessel function. We will assum
that k is small enough that the term inj 2 can be neglected
Since it is not trivial to obtain a meaningful result whic
properly contains the Debye-Waller factor, we proceed s
ply, as follows. From the numerical solution on a mesh
points we obtain the family of wave functions~each one
denoteduJ,P;a&), for which J and P are good quantum
numbers anda51,2,3, . . . . ~In limiting cases one may re
place the single indexa by two indicesN andg, whereN,
the number of phonons, is nearly a good quantum numb!
If we label the radial mesh points byk51,2,3, . . . , then we
have

uJ,P;a&5
(m52J

J (kcJ,P
(a)~k,m!e2 i (P1m)frAr kur k&uJ,Jz5m&

@2p (m52J
J (kucJ,P

(a)~k,m!u2r k#
1/2

.

~33!

Here ur k& ~and later^r ku) is a wave function of unit ampli-
tude at the positionr k . Also thecJ,P

(a) (k,m)’s are the set of
coefficients~for fixed J, P, anda) which are obtained by the
numerical solution of the (2J11)-component radial eigen
value problem on a set of mesh points$r k%. This discretized
eigenvalue problem involves diagonalization of nonsymm
ric matrix. ~The radial equation gives rise to a Hermitia
problem only if proper account is taken of the radial weig
function.! The numerical program takes no account of a
weight factor, but rather normalizes these wave functions
requiring that the sum of the squares of their coefficients
unity. Since we always wish to define inner products with
weight factorr k , we will explicitly include a factorr k when
we take inner products. Then ifX is a quantity which is local
in r and f r but may be off diagonal inJ and/or Jz , we
express its matrix element between such numerically
tained wave functions as
^J8,P8;buXuJ,P;a&[

E
0

2p

df r(k,m,m8^J8,Jz5m8uX~r k ,f r !uJ,Jz5m&r kcJ8,P8
(b)

~k,m8!* cJ,P
(a)~k,m!ei (P82P1m82m)fr

2p@(k,mucJ,P
(a)~k,m!u2r k(k8,m8ucJ8,P8

(b)
~k8,m8!u2r k8#

1/2
.

~34!
ion,

Herem8 assumes integer values between2J8 and1J8 and
m integer values between2J and1J.

To evaluate the cross sections, the major problem is
evaluate the matrix element, which we may call^ f uXu i &. We
will not discuss all possible transitions~which are shown in
Fig. 4 of I!. Instead we will focus on the neutron energy lo
spectrum due to~a! para to ortho conversion or~b! radial
phonon creation on an ortho molecule.
to

A. Para to ortho conversion

For neutron energy loss due to para to ortho convers
we need the matrix element of

X54p j 1S 1

2
kr Dexp~ ik•Rj !(

n
Y1

n~k!Y1
n~ r̂!* ~35!

and for simplicity we consider the case whenk is perpen-
3-11
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dicular to the cylindrical axis of the nanotube. Then we m
as well placek along the localx axis. Also the center of mas
of moleculej is at r k relative to the axis of the tube at pos
tion Rj

(0) which contains thej th molecule. Then we may
write

X5A6p j 1S 1

2
kr Deik•Rj

(0)
eikr kcosfr@Y1

21~ r̂!2Y1
1~ r̂!#. ~36!

At low temperature the initial state~whose energy is denote
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24541
yEi) will be the ground state forJ50 and for a small value of
P ~which we denotePi). Thus

S0→15
9

2
pFb8 j 1S 1

2
kr D G2

Z21

3(
i , f

e2Ei /(kT)d@E2Ei1Ef #Mi f , ~37!

where Ef is the energy of the (J51) final state, andZ
5( i exp@2Ei /(kT)#, and
Mi f 5U E0

2p

df r(k,m^J51,Jz5muY1
1~ r̂!2Y1

21~ r̂!uJ50,Jz50&eikr kcosfrei (Pf2Pi1m)fr r kcf~k,m!* ci~k!

2p@(kuci~k!u2r k(k,mucf~k,m!u2r k#
1/2

U 2

5

U (k@JPf2Pi11~kr k!cf~k,1!* 2JPf2Pi21~kr k!cf~k,21!* #r kci~k!U2

4p(kuci~k!u2r k(k,mucf~k,m!u2r k

, ~38!
be-

tic

in

H
of

we
whereJn(x) is a Bessel function andci(k) is the value of
cJ,P

(a) (k) for the initial state andcf(k) is the value of
cJ8,P8

(b) (k8,m8) for the final state.
We now discuss the qualitative meaning of this result.

calculatedS0→1 for several temperatures and the results
plotted in Fig. 8~a!. At zero temperature the initial state ha
Pi50. So the energy loss is zero up to the cut-off ene
which is the energy of para-to-ortho conversion. For sm
temperatures, the cross section does not appear discon
ously, but turns on rapidly over a range of energy of ord
kT. The first para-to-ortho~i.e., J50 to J51) transition is
observed at energies about 16.8 and 13.6 meV with appr
mately one-to-two intensity ratio~corresponding to a split
ting of 3.2 meV betweenJ51,M50 and J51,M561
states, respectively!. The center of gravity of theJ51 levels
gives the average para-ortho conversion energyEc

514.67 meV. This result represents only a small amoun
downward shift of 0.03 meV from the free molecule value
14.7 meV.

We note that there are several neutron scattering exp
ments reporting the para-to-ortho transition.9,10 The observed
splitting is about 1 meV, suggesting the idea that in tho
experiments hydrogen molecules were probably not ins
the nanotubes. The calculated para-to-ortho splitting of
meV is slightly larger than the 2.6 meV splitting observed
H2 on graphite.12

In addition to the sharp para-to-ortho rotational tran
tions, Fig. 8~a! also indicates several broad radial phon
transitions at energies about 15 and 30 meV~similar values
e
e

y
ll
nu-
r

xi-

f
f

ri-

e
e

.2
r

-

to those of H2 trapped in solid C60). Finally we note that
there are many lines in the spectrum due to transition
tween different tangential phonon states~i.e., P quantum
number!. However, their observation could be problema
due to experimental energy resolution~which would
be worse at high energies than FWHM of 0.5 meV used
Fig. 8!.

B. Ortho Cross Section

Here we discuss the scattering from an ortho2
molecule. As before, the major problem is the calculation
the matrix element. In analogy with the previous results
write

S1→15
1

2 Fb8 j 0S 1

2
kr D G2

Z21

3(
i f

e2Ei /(kT)d@E2Ei1Ef #Mi f , ~39!

where we neglect terms involvingj 2( 1
2 kr) and

Mi f 5u^ f ueikr kcosfru i &u2. ~40!

Now for Mi f we have in the notation of Eq.~38!
3-12



Mi f 5

E
0

2p

df r(
k,m

eikr kcosfrei (Pf2Pi )fr r kcf~k,m!* ci~k,m!

1/2

2

5

U(
k,m

JPf2Pi
~kr k!r kcf~k,m!* ci~k,m!U2

. ~41!
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Figure 8~b! shows the calculated spectrum ortho cro
sectionS1→1, indicating many transitions between a lar
number of states. It is possible to identify the radial phon
transitions for only one and two phonon states as indicate
the figure. On the other hand, the transitions between tan
tial phonon states~i.e., states with different quantum numb
P) dominate the calculated spectrum, giving rise to ma
sharp peaks. Due to experimental energy resolution, i
probably not possible to observe the transition at high en
gies~say above 20 meV!. However, the resolution at energie
below around 10 meV could be about 0.5 meV~which is
used in Fig. 8! and therefore it may be possible to obser
these transitions.

FIG. 8. The calculated neutron cross section~with arbitrary scal-
ing! for para to ortho~a! and ortho to ortho~b! transitions at severa
temperatures. The neutron wave vector transferk is taken to be
perpendicular to the tube axis with magnitude of 3 Å21. The peaks
are broadened by Gaussians with FWHM of 0.5 meV.
24541
s

n
in
n-

y
is
r-

Finally we note that the tangential phonon transitions
low 10 meV show a maximum near 3.6 to 4 meV. We c
understand this by considering the condition that the neu
wave form become resonant with the wave function of2
molecule going around the circumference of the minimum
the Mexican hat. The phase change when the neutron pa
through a diamater of the Maxican hat is 2kr 0, wherer 0 is
the radius at which the Maxican hat potential is minimal. T
phase change of the H2 molecule going around half a cir
cumference ispP. If we assume an initial state withPi

50, then the resonance condition ispPf52kr 0. With k
53 Å21 and r 053.5 Å, we find Pf'6. Then Ef2Ei

5\2Pf
2^(2mr0)21&50.09P2 meV53.2 meV, in reasonable

agreement with the numerical evaluation.

VII. CONCLUSION

We list the major conclusion from our study of H2 mol-
ecules bound to nanotubes which we treat as smooth cy
ders.

We have derived the analog of a radial equation for
Schrödinger equation for the translational and rotational m
tion of a molecule in cylindrical geometry. This formulatio
leads to classifying translation-rotation wave functions
cording to their properties under a global rotation of the m
ecule about the cylindrical axis.

Using this radial equation, the translation-rotation wa
functions for a hydrogen molecule bound either inside
outside a nanotube can be obtained numerically. We a
have developed simple toy models which quite accura
reproduce the numerical results, but have the advantage
they elucidate the nature of the translation-rotation dyna
ics.

Simple classical symmetry arguments fail to predict t
correct degeneracies of translation-rotation wave functio
However, the quantum wave functions are easy to unders
qualitatively. For instance, for aJ51 molecule ~such as
ortho-H2), one class of translation-rotation wave functio
has the molecule in aJz50 state~i.e., aligned along the axis
of the nanotube! with no admixture fromJz561. This sim-
plification is a result of the mirror plane perpendicular to a
of the cylinder.

We also suggest that neutron time-of-flight spectra co
provide useful confirmation of our results. To that end w
have calculated typical spectra that might be observed. Th
are shown in Fig. 8.
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APPENDIX A: INCLUSION OF BOTH ANHARMONICITY
AND TRANSLATION-ROTATION COUPLING

Here we study the simultaneous effect of anharmonic
and translation rotation coupling for the two-phonon ma
fold within the toy model. From Table I we see that we m
write the anharmonic HamiltonianVAH , which is indepen-
dent ofJz , as

VAH5V0I1
8

3
gs4[ 2u2,m50&^2,m50u

2u2,m52&^2,m52u2u2,m522&^2,m522u],

~A1!

whereV05152gs4/3 andu2,m& is a two-phonon wave func
tion ~with energy 3\v) as given in Table I. The translatio
rotation interaction may be written as

V5a@3Jz
222#1V8, ~A2!

where

V85
1

2
b@J1

2 ~x2 iy !21J2
2 ~x1 iy !2#. ~A3!

If we write the ground state wave function as

u0&5N0,0e
2(1/4)(x21y2)/s2

, ~A4!

then the two phonon eigenstates are

u2,m50&5
1

2
~X21Y222!N00e

2(1/4)(X21Y2) ~A5!

and

u2,m562&5
1

2A2
~X1 iY!2N00e

2(1/4)(X21Y2), ~A6!

whereX5x/s and Y5y/s. If ^ & indicates a ground stat
average, then we have the evaluation

^0u~x2 iy !2u2;m52&

5s2K S 1

2
~X21Y222!~X2 iY!2

1

2A2
~X1 iY!2D L

54A2s2, ~A7!
d

P.

24541
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y
-

so that

V852A2bs2[ u2,m522&^2,m50u

1u2,m50&^2,m52u] J1
2 1H.c., ~A8!

where H.c. indicates the Hermitian conjugate of the prec
ing term. We find the eigenvalues to be those of Table IV

APPENDIX B: CARTESIAN REPRESENTATION

Here we rewrite in the Cartesian representation the eig
functions which were given in Table III in cylindrical coor
dinates.

uJz50&5uZ&,

uJz51&52
1

A2
uX1 iY&,

uJz521&5
1

A2
uX2 iY&. ~B1!

From Table III the eigenfunctions with energya64s2b are

c65
1

2A2
~2u~X1 iY!~x2 iy !&7u~X2 iY!~x1 iy !&).

~B2!

So, apart from a phase factor,

c15
1

A2
uxX1yY&,

c25
1

A2
uxY2yX&. ~B3!

From Table III the eigenfunctions with energya are

c652
1

2
u~x6 iy !~X6 iY!& ~B4!

so that we may take the eigenfunctions to be

c15
1

A2
uxX2yY&,

c25
1

A2
uxY1yX&. ~B5!
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